
FOCS Proc. INET ’94/JENC5 J.-P. Redlich

FOCS – A Toolkit For Flexible Telecommunication Systems

Jens-Peter Redlich <redlich@informatik.hu-berlin.de>

Abstract

One peculiarity of todays telecommunication systems is

their tremendous heterogeneity which is mainly owed

to their historical, evolutionary development and per-

petual introduction of new devices and technologies.

This makes it hard for a programmer / system designer

to integrate many (sub-) systems into one application

and to provide “flexible services”1 .

In this paper we will emphasize the necessity for

a new telecommunication application framework that

allows to integrate many different services and provides

these applications with a mechanism allowing late /

dynamic (re-) configuration.

FOCS2 is a recently started project that examines

the applicability of object oriented design and imple-

mentation methods in the field of telecommunications.

As many service providers offer equivalent3 services, it

seams reasonable to introduce service abstractions and

to design applications in a way that makes it possible

to reference these service abstractions instead of the

actual service providers.

I. Introduction

Todays telecommunication systems are characterized

by a great variety of equipment connected through the

network, many of them providing similar services. For

example, the world wide public telephone network ac-

commodates devices dating back to ancient times of

telecommunications as well as modern digital ISDN

devices.

At present time we can observe both the continuous

output of new standards from standardization organiza-

tions and a perpetual change of the network itself (e.g.

by adding new equipment or introducing new techno-

logies).

For this reason the actual implementation of a par-

ticular service may be diverse (e.g. telephone: POTS,

ISDN, or even videophone). Which of them we choose

depends on things such as special requirements we may

1With “flexible services” we mean services that are able to adapt

to changing situations. How this adaptability can be achieved is one

topic of this paper.
2“FOCS” = “Flexibility Oriented teleCommunication System”.
3The term “equivalent service” makes only sense in respect to a

certain (user-) viewpoint (what the user expects the service to do).

have, availability of special-purpose hardware or other

resources (e.g. bandwidth), or service costs. Availabi-

lity of resources may change over time relatively slowly

(e.g. provision of a network access), less slowly (e.g.

wait until purchase of new special-purpose hardware),

or even comparatively fast (e.g. wait until the local rou-

ter is running again or traffic congestions are resolved).

From the user’s point of view, the different imple-

mentations of a particular service look all the same. It

is the underlying mechanisms that changes (and that

the user normally doesn’t want to care about). These

underlying mechanisms often themselves rely on (sub-)

services, the implementation of which can be mani-

fold too. Consider for example a service providing data

transportation: Depending on which data encoding al-

gorithm we use (or if we use one at all) we will get

different implementations of that service. They all rely

on different sub-services (here the data encoding algo-

rithm) but provide one and the same service to the user,

namely data transportation.

For flexible services it may be possible that the ser-

vice is still available even if some sub-services are not

(e.g. due to a lack of resources). However, the service

has to change its form in thiscase (e.g. a videophone ser-

vice might substitute its “continuous video” sub-service

by a “slow motion video”).

At Humboldt-University Berlin we are currently un-

dertaking a project called FOCS which investigates the

issue of building up complex telecommunication sy-

stems by using less complex components. These com-

ponents correlate to the sub-services mentioned above

and are used to obtain a maximum level of flexibility.

The choice of a particular component may, for instance,

be made at runtime from a set of equivalent service pro-

viders. Simultaneously we investigate to which extend

the appliance of object-oriented techniques can sim-

plify and speed up the design and implementation of

communication applications.

Althoughonly recently started, this (object-oriented)

approach has already proven essential at this stage of the

project. To support the objectives of FOCS in the best

possible way we introduced a new inter-object commu-

nication model which will be described later.

The ultimate aim of FOCS is to provide a framework

for a seamless integration of many different services and

their implementations. Once a service provider has been

211-1



FOCS Proc. INET ’94/JENC5 J.-P. Redlich

Modem

Fax

Modem

ComputerComputer Scanner

MultiMediaInternet

MultiMedia

A B

Printer

Telephone Telephone

Figure 1: A wants to send a message to B. A has the following technical equipment available: telephone, modem, fax,

scanner and a computer with internet access and multimedia hardware. B owns: a telephone, a printer and also a

computer with a multimedia extension. The question is: How can we get the message passed from A to B ?

implemented, it should be possible to reuse it under to-

tally different circumstances.

FOCS’ general approach to meet these goals is pre-

sented in section II of this paper. Basic concepts are:

object based / oriented system design, encapsulation,

service abstraction (introduction of ServiceID), service

market. An example is given to illustrate that there may

exist several ways to realize a certain (abstract) service,

none of which is universal because of its dependence

on resources that are not available everywhere.

The FOCS-Toolkit is introduced in section III. It

incorporates the basic concepts mentioned above. We

explain what service providers (SP’s) are and how they

establish a (local) service market. Brokers are presented

as special SP’s, which are to locate appropriate provi-

ders of (abstract) services on the service market.

The importance of a new inter object communication

model is stressed, because it enables late configuration

as requested above (by completely avoiding explicit re-

ferences to service providers).

Although the project has only recently started and is

just about to get into shape, a brief list of future plans is

given in section IV, which concludes this paper.

In what follows we demonstrate realizations of the

service described in figure 1. Note that some of the re-

sources needed are of a dynamic kind (their availability

may change fast), while others are not:

1. Traditional Telephone Call

(a) Both A and B do have a telephone (static).

(b) It is possible to get a telephone connection

between A and B (dynamic).

(c) The line is not busy; i.e. B does not use its

telephone (dynamic).

(d) B is at home (dynamic).

2. Fax

We cannot fax from A to B as B does not have

a fax receiver (static). We may wish to scan the

letter instead and have it delivered as a computer

processable file.

(a) A has a scanner (static).

(b) File delivery is possible. B has no Internet

access so we have to use the modems instead.

i. A and B do have a modem (static).

ii. It is possible to get a telephone line from

A to B (dynamic).

(c) B has the software to process, and a printer

to print the file (static).

3. Computer Document

(a) The document can be created on A’s compu-

ter using an editor or the scanner (static).

(b) B has a computer and appropriate hard-

and/or software to present the file (static).

(c) File delivery is possible. As B has no Internet

access, we have to use modems.

i. A and B do have a modem (static).

ii. It is possible to get a telephone line from

A to B (dynamic).

II. Basic Concepts

Modern telecommunication systems are highly compu-

ter based systems. Many of todays services are imple-

mented in software. Therefore it is important to study

211-2



FOCS Proc. INET ’94/JENC5 J.-P. Redlich

Display
Text-

Transport-
Transport-
SubSystem

SubSystem

Coding
(Data-Composition) (Data-Decomposition)

Decoding

Editor
Text-

Microphone Speaker

Figure 2: Example of a simple application, allowing simultaneous recording, transmission and presentation of audio

and text data. Important: The components shown in the picture above are abstractions, which have to be substituted

by concrete objects. Possibly there exists a choice between many implementations for some of them.

the applicability of modern software development me-

thods, e.g. object orientation, for this field.

This approach is further motivated by the phenome-

non that especially telecommunication systems have to

undergo many changes and extensions (because of mo-

dified user requirements, or introduction of new equip-

ment and/or technologies). For practical reasons an evo-

lutionary, continuity orientated, development is essen-

tial. OO-techniques promise to provide this.

II.A. The Object Based Model

Decreasing the complexity of large systems by structu-

ring and decomposing them has already been investi-

gated for a long time. The development of “structured

programming”, of which Modula-2 is a typical example,

can be seen as a milestone on this way.

The central idea of this approach is to split large sy-

stems into smaller components that are responsible for

only parts of the systems functionality. If these com-

ponents are still quite large, they are split again, until a

suitable component size is reached.

The central issue in this process, known as “stepwise

refinement”, is the independence of the components pro-

duced. If the programming language allows for access

to internals of components and thus taking advantage

of implementation details, software developers can sel-

dom resist doing that. The result is that the obtained

system is structured but not decomposed, because its

components are not independent from each other and

can only be understood by considering (and understan-

ding) the entire system.

This lead to the idea of modelling components as

“autonomous entities” (AE’s) which hide all details

about their internal structure and protect themselves

against access from outside, except through a well de-

fined (small) interface.

If this interface is based on sending and receiving

messages, the AE is called an object. Systems build of

objects are called object based systems. By correlating

types to the objects and defining an inheritance relation

for these types we obtain an object oriented model.

Object based systems have the advantage to encou-

rage modularization and decomposition. This increases

chances for software reusability and exchangeability of

an object’s implementation without affecting other parts

of the system.

II.B. Objects as Service Providers

In object based systems the implementation details of a

particular object become increasingly unimportant (per-

haps this information is even not available any more).

Instead the service provided by an object is emphasi-

zed. In this paper we see an object (-instance) essentially

(only) as a service provider.

When specifying the appropriate object (that is nee-

ded for some purpose) there are basically two possibi-

lities: Either we describe the object itself or the service

it has to provide. The latter allows for dynamic selec-

tion of an appropriate implementation (i.e. object-type),

while the former does not.

Objects can be composed of other objects which

have to be specified using one of these methods. The

former leads to a fixed design while the latter allows for

flexible selection of appropriate sub-service providers.

In this case we call the system configurable. Confi-

guration can take place at compile time, at the time

the application is started or immediately before the ser-

vice is to be provided. Composing objects by service4

is introduced in [7] as Programming in Large Scale

whereas the implementation of the various objects is

called Programming in Small Scale.

It should be stressed that it makes sense to imple-

4This is to determine (select) an object by its (abstract) service,

not by its implementation.

211-3



FOCS Proc. INET ’94/JENC5 J.-P. Redlich

BA

Receiver

SenderReceiver

Sender

Figure 3: In Version 1 there are two reliable unidirectional carrier services available. So we can construct the desired

bidirectional service by simply combining them.

A B

Error-Control
(Sender) Receiver

error prone

reliable
DEMUX Receiver

Sender
Error-Control

Sender MUX

(Receiver)
connection

connection

Figure 4: In Version 2 only the unidirectional service from B to A is reliable, while the service from A to B is error

prone (e.g. because of the quality of the chosen transmission media). In consequence its service has to be improved

by adding components providing error-detection and error-correction functionality (to be placed on both sides). By

using the reliable service and two additional MUX / DEMUX components we establish 2 reliable channels from B

to A, one for transmission of the original user data, the other for transmission of error-protocol data (e.g. data for

retransmission indications or confirmation of successfully received data blocks) which are to be send from B to A.

ment many different service providers (object types)

for one particular service. This is especially the case

if only few of the implementations are applicable in a

specific situation (e.g. because required resources are

not available).

Figures 3 and 4 show 2 versions of a bidirectional

carrier service implementation5, using two unidirectio-

nal carrier services having opposite direction. Ignoring

the contents of the boxes, which symbolize the service

provider, both versions look the same. Hence, a service

user (who doesn’t know anything about the box’s con-

tents / the service providers implementation) can not

distinguish between them.

Configuration allows to choose the version that is

best suited for a specific environment (e.g. for which all

required resources are available) and to integrate it into

the application.

II.C. Service Market

If there are many different service providers available

at the time a system is configured (i.e. selecting con-

crete objects and defining their interactional relations),

a service market is established.

Configuration can be done statically (while compi-

ling or linking the program) or dynamically (at program

start or directly before usage of the service) or it may

be modified dynamically (dynamic reconfiguration).

5A “carrier service” provides data transportation.

When applying dynamic configuration we need a

mechanism allowing us to locate a certain service pro-

vider on the service market. It is clear that the appli-

cation itself doesn’t know anything about the structure

and maintenance of the service market.

Thus we assign a service identifier (ServiceID) to

every service we use. A ServiceID looks like a term

with the functor indicating the service class and the

term’s arguments specifying the service more detailed

(e.g. parameters or additional requirements).

A broker can then be entrusted to deliver an appro-

priate service provider (object) using the ServiceID as

the service specification. Dynamically changing condi-

tions in the environment (e.g. availability of resources)

may affect the selection process.

It should be emphasized that there may exist many

service providers for the same service (but usually dif-

ferently implemented). On the other hand one single

object may be able to provide various services (each

having a different ServiceID associated).

III. FOCS

In section II we gave reasons for using an object-based

approach when modelling and implementing complex

communication systems. FOCS incorporates these con-

cepts by means of a new, decoupled, inter-object com-

munication mechanism that allows for:

211-4



FOCS Proc. INET ’94/JENC5 J.-P. Redlich

� Temporal independencies of sender and receiver.

� Easy replacement of objects at runtime

(dynamic (re-)configuration).

� Many (competing) receivers for one message.

� Explicit modelling of the flow of data and basic

synchronization.

� Concurrent object activities.

III.A. Objects in FOCS

In FOCS, the terms object and service provider are used

interchangeably. Virtually every object (that contributes

to a piece of software) is a service provider. Excepti-

ons are places and methods which are in some sense

only auxiliary objects. Therefore we will go on and de-

scribe service providers having in mind that these are

the fundamental objects in FOCS.

A service provider (SP) is a black box that provides a

certain service and hides all details about its implemen-

tation. There are channels attached to an SP through

which messages (i.e. message objects) can be received

and send, respectively. For maintaining its (local) state

it is equipped with local variables (which are neither vi-

sible nor accessible from outside the SP). A SP having

no channels attached is called an application.

in1

in2 out
Internals

Local Variables
(hidden)

Figure 5: This picture shows an SP with 3 channels:

in1, in2 and out. The channel names are defined locally

(where they are unique).

We distinguish basic and compound SP’s. A SP is

called basic if it does not rely on any other SP. Howe-

ver, it can use services provided by non-FOCS systems

(such as the underlying operating system). Because an

SP hides its implementation anyhow and because its

usage of non-FOCS systems has no impact on any other

FOCS-object, there is no fundamental difference to an

SP which provides its service completely by itself. This

is an essential aspect of FOCS as it allows to incorpo-

rate many of todays already existing communication

systems and by that, software reusability in a large scale.

In opposition to a basic SP a compound SP imple-

ments only part of its service. For the complete service it

depends on sub-services provided by other SP’s, which

may themselves be compound or basic.

In figure 6 we see a CommandTool-SP that provi-

des an interactive command driven tool (e.g. a shell

or monitor). It depends on two sub-services: a text-

window and a so called evaluator, each having two

channels attached to them. The text-window-SP accepts

(string-)objectson one channel and communicates them

to the user (e.g. by displaying them in a text window on

the screen), while words communicated from the user

(e.g. typed in at the keyboard) will be sent as (string-)

objects through the other channel. The evaluator SP on

the other side accepts (string-)objects at its first chan-

nel, evaluates them according to the rules of a specific

language (and producing the desired side effects), and

sends the result through the other channel (as output).

The CommandTool-SP only needs to connect these two

sub-SP’s. Doing so it establishes its own service, in this

case some interactive CommandTool.

fromKeyboard
toDisplay

output inputoutput

input

fromKeyboard

toDisplay

Text-

Evaluator

Window

CommandTool-SP

Text-

Window

Service Market:

CommandTool-SP

needs: Evaluator, Text-Window

Evaluator

Figure 6: The compound SP shown above consists of

an “Evaluator-SP” and an SP providing facilities for

communication between a human and the machine.

A compound SP hides its sub-SP’s like all other local

details. During initialization it requests its sub-services

to be established. The task of getting appropriate service

providers for this is done by a broker.

It lies in the very nature of FOCS (and any other

object-based system that adheres to hiding of imple-

mentation details) that it is not known how services

are implemented. But in FOCS this means even more:

One and the same service might end up being provided

by totally different SP’s. In our example, the service

“text window” might be provided by a vt100 terminal,

by an X-window, a NeXT-DPS window, or some other

thing that can communicate strings to a user (i.e. display

text somehow somewhere). Obviously, the choice of the

“right” service provider depends on several factors, like

availability of certain hardware or software (e.g. win-

dow servers), preferences of the user and so forth. The

CommandTool-SP does not depend on the implementa-

tion of the text window service. Therefore one and the

same (CommandTool-)SP works on different platforms

(SUN or NeXT, with or without X server etc.) without

the need of adapting it.

211-5



FOCS Proc. INET ’94/JENC5 J.-P. Redlich

III.B. Inter-Object Communication

In the previous section one could get an idea of how ser-

vice providers interact. This will be explained in more

detail now:

Every service provider has a set of methods that act

on its internal variables and may change its internal

state just like in conventional object oriented systems.

However, in those systems a method is usually invoked

by sending a message to the object. Moreover, in many

cases this is done synchronously, i.e. the sender has to

wait until the receiver of the message has finished run-

ning the appropriate method. In FOCS, every method

has some input places attached to it. A method is invo-

ked when there is at least one (message-) object on each

of the input places. The method then usually removes

the message objects from its input places and eventually

puts some (other) objects on its output places which are

attached to it as well. Places are auxiliary objects that

can store an unlimited amount of message objects.

Note that a method can only be invoked (can fire) if

there are objects on each of its input places. If this is

the case, a method is said to be satisfied. As a method

may remove objects from its input places (which may

in turn be input places of another method as well) other

methods may loose satisfaction when this method fires.

On the other hand a message may put objects on its

output places which may cause other methods to be

satisfied.

A method has to have at least one input place (other-

wise it would be continuously firing), but does not ne-

cessarily have to have output places. This model has a

number of features that can not be found in conventional

object oriented systems:

� Inter-object communication is inherently decou-

pled and asynchronous. A method places a

(message-) object on a place and goes ahead. It

does not have to wait for the receiving service pro-

vider to process this message.

� Objects usually do not know their communication

partner. All they see are some places on which

messages appear and/or on which messages to put.

That makes it easy to replace the actual object at

runtime by a different object (that provides the

same service and thus has the same interface). All

we have to do is to disconnect the object (which

is to be removed) from the places it is connected

to, create the new object and connect it back to

the same places. Because all other SP’s reference

only places (which haven’t changed), they will not

notice the reconfiguration.

� Many methods may “listen” to the same place(s).

This may lead to one method not getting every

message but only one in a while, thus having more

time to process one message. This allows for easy

load balancing.

� A method must not take objects from other places

than its input places. Equally, no method may put

objects on places other than its output places. This

makes it quite easy to follow the flow of data.

� Having places and methods it is possible to achieve

synchronization or to model capacities of places

similarly to what can be modelled with Petri-Nets

(although FOCS is by no means a Petri-Net imple-

mentation, in fact that is about the only similarity

to Petri-Nets).

� The model implies concurrent object activities be-

cause method firing is done independently from

other objects’ activities.

At runtime the input and output places of the various

methods of a service provider are assigned to existing

places in the system. Now it is clear what the channels

of the service providers meant to be: These are the

places of some methods of a service provider (similar

to “public” methods in other systems) and need to be

assigned to existing places in the system in order to

communicate with that object and (hence) benefit form

the service provided by that object.

If we let circles denote places and bars denote me-

thods we can “draw” a service provider in a manner that

expresses some of the features explained above. Figure

7 gives an example.

Sub-SC
Terminal

Sub-SC
Terminal

in2

out1

in1

in1

in2

out2

out1

in2
out2

in

ID2terminal1

terminal2

audio

video

out1

out2

MULT

ID2

in1 out

COMP

Figure 7: This is a compound SP. It can be supplied with

audio and video on two independent channels. After

synchronization of the incoming streams, presentation

is done at none, one or two terminals.

211-6



FOCS Proc. INET ’94/JENC5 J.-P. Redlich

ServiceID

(first choice)

(conserv. ch.)

(best choice)

CandidateH-Broker

H-Broker

H-Broker

P-Broker

H-Broker

H-Broker

P-Broker

P-Broker

P-Broker

Figure 8: Hierarchical brokers (H-Brokers) entrust sub-brokers (H-Brokers or P-Brokers) to look for service providers,

using various strategies. The P-Broker marked “Candidate” is the first one found, which offers the desired service.

All previously asked P-Brokers declined (crossed out in the picture).

III.C. Brokers

Before SP’s can be combined to higher level (com-

pound) SP’s, some service providers (sub-SP’s) must

be found. For this job FOCS integrates the concept of a

local service broker.

Every object-type implemented in the local system

provides one or more services (locally). It is possible

that there are many providers for the same service which

may be implemented quite differently.

By presenting a ServiceID6 to the object-type, a bro-

ker can “ask” every (local) service provider whether it

is able to provide the desired service. If not, the inquiry

must be continued. This process either stops with an

offer (of the service) or the service is not available at

the local system. In the latter case the SP that asked for

this service can now decide (autonomously) whether

it is willing to lower its requirements (and restart the

search, hoping that a lower quality service is available),

or whether it can omit this particular service or whe-

ther the service was mandatory, so that it is not able to

provide its own service (worst case).

For this reason a compound SP has to check for its

resources (e.g. sub-SP’s) before it commits itself to offer

a certain service.

The ServiceID has the form of a term with the functor

entitling the service class. The management of service

class names (i.e. ServiceID functors) is described later.

The arguments of the term specify the desired service

more precisely. But there exist no general rules for how

a ServiceID has to look like or how its arguments have to

be interpreted (semantics of a ServiceID). Only objects

really providing a particular service know the service

and its description given by the ServiceID. All other

service providers can easily detect that they don’t know

the service this ServiceID relates to (possibly by simply

6The ServiceID describes the service and the interface of an object

which provides that service.

looking at the ServiceIDs functor). Because they will

certainly not provide the desired service there is no

need for them to understand the ServiceID.

Using ServiceID’s it is possible to define service

classes and to introduce concepts like inheritance and

polymorphism. This leads us to an object oriented mo-

del, the details of which are beyond the scope of this

paper.

Let us now discuss how a broker works:

We distinguishtwo types of brokers: primitive brokers

and hierarchical brokers.

A primitive broker is responsible for only one single

SP-implementation (but knows everything about it). It is

able to decide whether or not the SP-implementation it

manages is able to provide a service required by a given

ServiceID. If yes, it returns an acceptance, otherwise it

declines.

Hierarchical Brokers on the other hand don’t know

any SP-implementation. Instead, they know other bro-

kers they can ask for service providers. There are several

ways how to delegate the request to their sub-brokers:

First, they can ask their sub-brokers sequentially (one

after the other) or they can do it in parallel. Second,

if there are more than one service-provider found, they

have to select one. There are many strategies available

how to do that: first choice, best choice (requiring an

effective assessment-function), alternative choice, con-

servative choice, and many more.

If a hierarchical broker found some object providing

the service it looked for, the state of the broker is usually

saved. If it turns out (at a later time) that the selected

object is not a good choice (e.g. because it blocks re-

sources needed for other services), the broker can than

be reactivated in order to provide an alternative object

(backtracking).

211-7



FOCS Proc. INET ’94/JENC5 J.-P. Redlich

By combining brokers using different strategies it is

possible to control how the broker observes the service

market.

Note that in the paragraphs above we only discussed

the local case which would hardly be sufficient for a tele-

communication system. Brokers are services providers.

So, if we want to search for a service in a distributed

market7 we simply ask a local broker to supply a service

provider that offers the service of brokering across the

net.

III.D. Composition of Objects

(Phases of Object Creation)

From the above mentioned it is clear that the creation

of new SP instances, especially if they are compound

(i.e. they depend on services of other SP’s), may be a

complex process.

First of all a ServiceID specifying the desired service

is presented to a broker. The broker now inquires other

brokers until a primitive broker is found that manages

an appropriate SP-implementation. This broker is capa-

ble to decide whether or not it can deliver an object that

is able to provide the specified service (respecting all

parameters and additional requirements as indicated in

the ServiceID’s arguments). The agreement notification

can be subject to withdrawal, because it may turn out at

a later time that certain resources which are necessary

for the service are not available (e.g. the human com-

munication partner on the other side of the line). A SP in

this state is called proposal. If a proposal is a compound

SP a list of sub-services needed must be built and bro-

kers must be entrusted with finding the corresponding

service providers. If it is possible to find an appropriate

service-provider for every sub-service demanded, the

(composed) SP is called candidate. If for some of the

services specified in the demanded-subservices list, no

service provider can be found the proposal has to de-

cide whether to change the service requirements or to

work without the unavailable services. If the latter is

impossible, it has to declare itself unable to provide its

service and the broker has to look for another service

provider.

III.F. Call

If a user wants to use a certain telecommunication ap-

plication, he (or she) starts a call. As a result an SP is

created at every participating node. This SP’s task is to

control the call relation and to manage other SP’s nee-

ded for this particular application (by managing SP’s it

manages real resources), including creation and termi-

nation of SP’s.

7distributed across a network, that is.

The structure of a call providing traditional services

for voice and/or data transfer is quite static. The termi-

nation of one component usually results in termination

of the entire call. It is also unusual for traditional calls

to involve more than 2 parties in one single call.

In FOCS it is an explicit goal to modify a calls struc-

ture after it has been established. This includes adding

and removing parties to resp. from the call and the crea-

tion and termination of SP’s on demand. Features allo-

wing to modify an active SP should only be provided

by the SP itself (encapsulation and autonomy of an SP).

FOCS distinguishes mandatory and optional SP’s.

Mandatory SP’s are established and terminated together

with the call, while optional SP’s can be created and

terminated dynamically on demand at any time during

the call. They don’t even have to be established at all.

If an optional SP terminates because of errors, the SP

that contains the terminating SP can decide whether to

live without it, to restart, to replace it by an alternative

service provider, or to terminate itself. Usually, this does

not affect the existence of the call.

Because services usually act in a distributed man-

ner, the existence of a powerful signalling system is

tremendously important. It is hard to imagine how to

provide the above mentioned dynamism of a call wit-

hout separating call control and connection control (for

further information refer to [6]). Signalling in FOCS is

itself a service which can be provided by many (diffe-

rent) implementations.

III.G. Integration of Other Systems

In practice there exist already many service providers

which can be used to construct new services. Typical ex-

amples are services providing data transport (e.g. TCP-

IP, telephone), directory services (e.g. X500), but also

services for human,computer communication (e.g. X-

windows, multimedia toolkits from DEC and NeXT, ...).

It must be possible to integrate these systems in FOCS,

because otherwise FOCS would be just one more system

(one of hundreds) to provide communication services.

To reach this goal SP’s can be designed that reflect

the functionality of the subsystem that is to be integrated

in FOCS. Now it is possible for every FOCS-customer

to access this object in order to use the subsystems

service (via the newly designed FOCS interface). Mo-

reover it is possible to select between subsystems by

looking for appropriate SP’s at the local service market.

It is understood that only SP’s offering access to

highly available services (these are right now especially

services provided by non-FOCS systems) are likely to

to reach each potential communication partner because

211-8



FOCS Proc. INET ’94/JENC5 J.-P. Redlich

that partner may not have the FOCS software availa-

ble but may have access to the subsystem used (e.g.

telephone, fax, internet).

III.H. Globally Unique ServiceID’s

Selecting service providers satisfying various Ser-

viceID’s and combining them to a (distributed) app-

lication can work only if the naming convention of the

ServiceID used to specify the cooperating services is

common to all installed FOCS systems. Because FOCS

intends to deal with global communication, this unique

understanding of ServiceID’s must be global too.

This does not mean that a particular implementa-

tion of a service must be globally available. It is even

quite possible (and likely) that everybody owns his (or

her) private service implementation of a service the Ser-

viceID of which is one and the same. Hence it must be

guaranteed that everybody associates the same service

(including service semantics and service interface) with

a given ServiceID.

For this reason everybody who wants to define a new

service (for FOCS) has to provide a unique ServiceID

for it (an additional detailed service description and a

reference implementation would be appreciated).

Developers of (new) telecommunication applicati-

ons can now decide whether they want to use this newly

defined service. Providers of similar services may check

whether their objects can provide the same service (in

order to be selected by a broker if users start to use the

new service).

To guarantee global unique ServiceID’s a global au-

thority is needed in order to administer the set of Ser-

viceID’s already in use. To avoid this it is proposed

that every institution that intends to define new FOCS-

services manages its own name space. The global uni-

que ServiceID can then be yielded by appending a ‘@’

and the internet address of the institution to the local

name. Using this mechanism it is easy to know whom

to ask for details or the implementation if only the name

of a service is given. Names of new services (and a short

abstract about what they do and how the interface is de-

signed) may be distributed via news.

IV. Future Plans

The FOCS project, as presented in this paper, has just

started. However, first prototype implementations of the

framework system and a few services are available.

Future work is supposed to integrate many of todays

(already existing) communication systems and will pro-

vide us with even new services and applications. Spe-

cial interest will be given to issues of multimedia data

transportation and processing in heterogeneous envi-

ronments.

But for now the major task is to implement a set of

basic services, which can be used for writing sample

applications. These services will include various carrier

services, signalling services, broker services for distri-

buted service markets, services for code transfer and

remote operation services as well (giving access to SP’s

available at remote hosts only).

For the future, access to “higher services” such as

email, fax, telephone, video and processing of multime-

dia documents is planned.

A related project dealing with management of

FOCS’ service providers has just started.

Also, it is still under investigation what the concrete

relationships between service providers and their bro-

kers are. In our opinion it as an major advantage of

FOCS that service providers (or their P-Brokers) are

asked if they can establish a specific service instead of

agreeing on a common (probably not optimal) notation

for service description. However, this introduces the

problem that there is possibly a large number of SP’s

(brokers) to be asked. It would be nice if the hierarchy

that is provided by H-Brokers would logically correlate

to a semantic structure of the service market which is

yet to be established.

V. Conclusion

We stressed the necessity for a new, generic telecommu-

nication application framework that allows to integrate

many different services into one application and which

benefits from the fact that some of these services can

substitute each other.

We showed that OO-technologies are applicable in

the field of telecommunication and that they lead to

well structured applications. Late configuration allows

for flexible services, i.e. services which are (mostly au-

tomatically) able to adapt to changing situations in the

network or terminal equipment. This is achieved by

utilization of brokers which locate appropriate service

providers for a certain task on the (local) service market

at runtime.

FOCS is a promising approach to implement these

ideas in the form of a programming toolkit. It incorpo-

rates a new, powerful interobject communication model

and allows to integrate existing (sub-) systems.

211-9



FOCS Proc. INET ’94/JENC5 J.-P. Redlich

VI. References

[1] Bertrand Meyer, “Objektorientierte Softwareent-

wicklung”, Hanser, München/Wien, 1990.

[2] N.Wirth, “Programming in Modula-2”, Springer-

Verlag, New York 1982.

[3] Andrew S. Tanenbaum. “Computer-Netzwerke”,

Wolframs Fachverlag, München 1991.

[4] Frank Bomarius, “Ein System für die Program-

mierung verteilter objektorientierter Applikatio-

nen”, Dissertation am FB Informatik der Univer-

sität Kaiserslautern, 1990.

[5] Ludwig Keller, “Vom Name-Server zum Trader

- Ein Überblick über Trading in verteilten Syste-

men”, PIK 16, Heft 3/1993 Seite 122 ff.

[6] H. Ouibrahim, “Access Signalling Architecture

Based On An Object Oriented Service Descrip-

tion”, Workshop on Broadband Communications

Estoril, 20-22. January 1992, Page 106-117.

[7] Jürgen Becher, “Konfigurierung verteilter, hete-

rogener Informationsverarbeitungssysteme”, Dis-

sertation am Institut für Telematik, Universität

Karlsruhe, 1993.

[8] Budd, “Little Smalltalk”, Prentice Hall, 1987,

ISBN 0-201-10698-1.

Author Information

Jens-Peter Redlich works as an assistant at the Dept.

of Computer Science at Humboldt University Berlin /

Germany, where he received a diploma in 1993.

His research currently focuses on practical design me-

thods for and implementation of telecommunication

and multimedia applications. His previous activities

have been centered around the unix operating system,

X-windows, and practical implementation of tools for

machine , user communication.

211-10


